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ABSTRACT

In this paper, we present an analysis of a multigrid method for nonsymmetric and/or indefinite elliptic
problems. In this multigrid method various types of smoothers may be used. One type of smoother which we
consider is defined in terms of an associated symmetric problem and includes point and line, Jacobi and Gauss-
Seidel iterations. We also study smoothers based entirely on the original operator. One is based on the normal
form, that is, the product of the operator and its transpose. Other smoothers studied include point and line,
Jacobi and Gauss-Seidel. We show that the uniform estimates of (ref. 6) for symmetric positive definite problems
carry over to these algorithms. More precisely, the multigrid iteration for the nonsymmetric and/or indefinite
problem is shown to converge at a uniform rate provided that the coarsest grid in the multilevel iteration is
sufficiently fine (but not depending on the number of multigrid levels).

1. INTRODUCTION

The purpose of this paper is to study certain multigrid methods for second order elliptic boundary value
problems including problems which may be nonsymmetric and/or indefinite. Multigrid methods are among
the most efficient methods available for solving the discrete equations associated with approximate solutions of
elliptic partial differential equations. Since their introduction by Fedorenko (ref. 15), there has been intensive
research toward the mathematical understanding of such methods. The reader is referred to (ref. 19), (ref. 17) and
(ref. 3) and the bibliographies therein. Most of these works concern symmetric, positive definite elliptic problems
although a few consider nonsymmetric and/or indefinite problems. In particular, (ref. 1),(ref. 18), (ref. 10) and
(ref. 24) deal with such multigrid algorithms and are most closely related to the subject of this paper. All of these
papers share the requirement that the coarse grid be sufficiently fine. We shall briefly describe their contents.
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do so, for U.S. Government purposes. This work was also supported in part under the National Science Foundation Grant No. DMS-9007185
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supported by the Korea Science and Engineering Foundation.
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The paper by Bank (ref. 1) derives uniform convergence estimates for the W-cycle multigrid iteration with
both a standard Jacobi smoother and a smoother which uses the operator times its adjoint. In each case, a
sufficient number of smoothings are required and a sufficiently fine coarse grid, depending on the number of
smoothings, is needed. Some regularity for the elliptic partial differential equation was also required.

Mandel studied the V-cycle iteration and showed that it was effective with only one smoothing and a
sufficiently fine coarse grid. His result requires that the underlying partial differential equation satisfies the “full
elliptic regularity” hypothesis and generalizes the results of Braess and Hackbusch (ref. 2) for the symmetric
positive definite problem.

Bramble, Pasciak and Xu (ref. 10) studied the symmetric smoother introduced by Bank and showed that
the W—cycle and variable V-cycle worked without making the undesirable requirement of “sufficiently many
smoothings”. Somewhat more than minimal regularity was needed.

In (ref. 24), Wang showed that, for the standard V-cycle with one smoothing, the “reduction factor” for the
iteration error was bounded by 1 — C/J + Cih; where J is the number of levels, k, is the size of the coarsest grid
and C and C, are constants. This estimate deteriorates with the number of levels and will be less than one only if
the coarse grid is subsequently finer as the number of levels increases. Minimal elliptic regularity was assumed.

In this paper uniform iterative convergence estimates for V-cycle multigrid methods applied to nonsymmetric
and/or indefinite problems are proved under rather weak assumptions (e.g., the domain need not be convex).
Uniform estimates were shown to hold in (ref. 6) and (ref. 8) for the V-cycle with one smoothing step in
the symmetric positive definite case under such hypotheses. We show that these results carry over to the
nonsymmetric and/or indefinite case for a variety of smoothers. The coarse grid must be fine enough but need
not depend on the number of levels J. Such a condition seems unavoidable since, in many cases, it is needed even
for the approximate problem to make sense.

In recent years, some other techniques have been proposed to handle the nonsymmetric indefinite case. One
approach in (ref. 14), (ref. 4) and (ref. 7) is to precondition with a symmetric operator and then solve certain
normal equations by the conjugate gradient method. One possible advantage of such a method is that some
nonsymmetric problems which are not “compact perturbations” of gymmetric ones may be treated. Of course, the
usual normal equations may be formed and then preconditioned (cf. (ref. 7) and (ref. 20)); this approach seems
to be rather restrictive in that good preconditioners may be difficult to construct. Other recent approaches have
included Schwarz type methods (ref. 12) and two-level methods in which a “coarse space” is introduced to reduce
the problem to one with a positive definite symmetric part (cf. (ref. 4), (ref. 13) and (ref. 25)).

The remainder of the paper is organized as follows: In Section 2, we describe a model problem and introduce
the multigrid method. In Section 3, smoothers based on the symmetric problem (and used in our nonsymmetric
and/or indefinite applications) are defined and the relevant properties which they satisfy are stated. Section
4 develops smoothers based on the original problem. The main results of the paper, which provide iterative
convergence rates for the multigrid algorithms with the smoothers of Sections 3 and 4, are given in Section 5.

5 THE PROBLEM AND MULTIGRID ALGORITHM.

We set up the model nonsyrvhmet;;i’é 7pr'orbiém and the srirnilplestwrilulrtig:tid algéfi:t}{t’n:ijﬁ this section. We consider,

for simplicity, the Dirichlet problem in two spatial dimensions approximated by piecewise linear finite elements
on a quasi-uniform mesh. The multigrid convergence results hold for many extensions and generalizations as
discussed at the end of Section 5.




We consider as our model problem the following second order elliptic equation with homogeneous boundary
conditions.

2 2
i} Ou bu .
— Uz:l b:\-:_j(a"jg;) + ié] b,éz—' +au = f in Q,

u=0 on 09Q,

(2.1)

where § is a polygonal domain (possibly nonconvex) in R? and {a;;(z)} is bounded symmetric, and uniformly
positive definite for z € Q. We assume that a;; is in the Sobolev space W;(Q) for p > 2/7 (see, (ref. 16) for

the definition of W7 (Q)). Further, we assume that b; is continuously differentiable on Q and that |a| is bounded.
Finally, we assume that the solution of (2.1) exists.

Let H'(Q) denote the Sobolev space of order one on Q (cf,, (ref. 16)) and let H§(S2) denote those functions in
H'(£2) whose trace vanish on 9. For v,w € H}(), define

2 2
v dw dv
(2.2) A(v,w) —'.,Jzﬂ/s;aija_;&;dz-’- ;:1 Ab;-a;;wdz+£)avwdz.

The solution u of (2.1) satisfies
(2.3) A(u,v) =(f,v) forallve Hy(®),
where (-,-) denotes the inner product in L*(Q).

For the analysis, we introduce a symmetric positive definite form /i(-, ) which has the same second order part
as A(:,-). We define A(-,-) by

2
- fu Ov
Au,v) = ”‘L:‘I[}a')é?;a,_'dz‘*-,/;)uvdz'
The difference is denoted by .
D(u,v) = A(u,v) — A(u, v).

The form D(-,-) satisfies the inequalities
(2.4) |D(u,v)] < Cllull; llvll and |D(u,v)] < Cllull{jvll; -

Here |||, and ||| denote the norms in H'(Q) and L*(R) respectively. The second inequality above follows

from integration by parts. Here and throughout the paper, ¢ or C, with or without subscript, will denote a
generic positive constant. These constants can take on different values in different occurrences but will always be
independent of the mesh size and the number of levels in multigrid algorithms.

By the assumptions on the coefficients appearing in the definition of A(:,), it follows that the norm A(v,v)!?
for v € H'(Q) is equivalent to the norm on H 1(Q). Thus, we take

lloll; = A(v, )%

We develop a sequence of nested triangulations of Q in the usual way. We assume that a coarse triangulation
{r{} of Q is given. Successively finer triangulations {ri} for m > 1 are defined by subdividing each triangle
(in a coarser triangulation) into four by connecting the midpoints of the edges. The mesh size of {ri} will be
denoted to be d, and can be taken to be the diameter of the largest triangle. By similarity, the mesh size of {r},}

is 21""d1.

For theoretical and practical purposes, the coarsest grid in the multilevel algorithms must be sufficiently fine.
In practice, however, the coarse grid is still considerably coarser than the solution grid. Let L and J be greater
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than or equal to one and set My, for k = 1,...,J, to be the functions which are piecewise linear with respect to
the triangulation {r{,;}, continuous on Q and vanish on 8Q. Since the triangulations are nested, it follows that

McCcM,C...CM;.
The space M} has a mesh size of hy = ol-L-kg, — 9l-kp,

Fix kin {1,2,...}. Let us temporarily assume that for every u € M,

@8 r, 147('74»'5)=_0_7f95£1,19§%1 mzylgesu=0 o

This assumption immediately implies the existence and uniqueness of solutions to problems of the form: Given a
linear functional F(-) defined on M;, find u € M, satisfying

A(u,¢) = F(¢) for all ¢ € M.
In particular, the projection operator Py : H!(Q) — M; satisfying
A(Pru,v) = A(u,v) for all v € M,

is well defined.

Clearly, if (2.2) has a positive definite symmetric part then (2.5) holds. More generally, if solutions of (2.1)
satisfy regularity estimates of the form

(2.6) lullita < CllFN-1+4a)

then, it is well known (cf., (ref. 22)) that there exists a constant ho such that for hx < ho, (2.5) holds and
furthermore

@7) (7 = Peyull < chg|I(T = Po)ulls.
and finally,
(2.8) 1Peull, < Clfull; -

Even if regularity estimates of the form of (2.6) are not known to hold, then (2.5) is known from a recent result by
Schatz and Wang (ref. 23).

Lemma 2.1 (ref. 23). There exists an hy such that (2.5) holds for hi < hy. Moreover, given € > 0, there exists
an ho(€) > 0 such that for all hx € (0, ho), (2.8) holds and

(2.9) (I = Pe)ull < €l|(Z = Pe)ulls.
Remark 2.1. The above ¢ will appear in our subsequent analysis. We note that ¢ can be taken arbitrarily small.

However, L will be taken large enough so that (2.5), (2.8) and (2.9) hold. Thus, the coarse grid size (i.e., L) for
any estimate in which ¢ appears will depend on ¢.

In our analysis, we shall use the orthogonal projectors B; : HYQ) — M and Q: : L*(Q) — M; which,
respectively, denote the elliptic projection corresponding to A(:,) and the L%(Q) projection. These are defined by

A(Pyu,v) = A(u,v) for all v € My,
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and
(Qru,v) = (u,v) for all v € M;.

The multigrid algorithms will be defined in terms of an additional inner product (-,-) on My M;. Examples of
this inner product in our applications will be given in the next section. ‘Additional operators are defined in terms
of this inner product as follows: For each k, define A; : My — M, and A; : My — M; by

(Aru, v)e = A(u,v) for all v € My,

and

(Aru,v)e = A(u,v) for all v € My.
Finally, the restriction operator P} , : My — M;_; is defined by

(Pf_lu, V)k—1 = (u, )k for all v € Mi_1.

We seek the solution of
(2.10) A(u,v) = (f,v), forallve M;.
This can be rewritten in the above notation as

(2.11) Aru=Quf

We describe the simplest V-cycle multigrid algorithm for iteratively computing the solution u of (2.3). Given
an initial iterate ug € M, we define a sequence approximating u by

(2.12) uiy1 = Mg, (ui, Qsf).

Here Mg;(-,-) is a map of M;M; into M; and is defined as follows.

Definition MG. Set Mg;(v,w) = A;'w. Let k > 1 and v,w be in Mi. Assuming that Mg, _,(-,-) has been
defined, we define Mg (v, w) by:

(1) Ty =VvV+ R;,(w - Akv).
(2) Mg(v,w) = zx + ¢, where g is defined by

g = Mg, (0, P}_j(w — Aszy)).

Here Ry : My — M, is a linear smoothing operator. Note that in this V-cycle, we smooth only as we proceed
to coarser grids.

In Section 3, we define Ry in terms of smoothing operators defined for the form /i(-, -). Specifically, the
smoothing procedure for the symmetric problem will be denoted R : My — M, and we set Ry = Ryi. In Section 4,
we consider smoothers which are directly defined in terms of the original operator A;.

A straightforward mathematical induction argument shows that Mg, (-,-) is a linear map from M;M; into M;.
Moreover, the scheme is consistent in the sense that v = Mg;(v, A;v) for all v € M;. It easily follows that the
linear operator E = Mg,(:,0) is the error reduction operator for (2.12), that is

u—uip1 = E(u — uy).
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Let Ty = RiAiP: for k > 1 and set T} = P;. Using the facts that P} Ax = Axk_1Pi_y and PPy = P,_; and
Definition MG, a straightforward manipulation gives that for k > 1 and any u € M;,

u — Mg (0, Ax Piu) = (I — Te)u — Mgi_1(0, Ae-1Pe-1(I — Ti)u).
Let Epu = u — Mg (0, AxPiu). In terms of Ei, the above identity is the same as
Ei = Ee1(I = Ti).
Moreover, by consistency, £ = E; and hence
(2.13) E=(I-T)(I-T)---(I1-Ty).

The product representation of the error operator given above will be a fundamental ingredient in the convergence
analysis presented in Section 4. Similar representations in the case of multigrid algorithms for symmetric problems
were given in (ref. 9).

The above algorithm is a special case of more general multigrid algorithms in that we only use pre-smoothing.
Alternatively, we could define an algorithm with just post-smoothing or both pre- and post-smoothing. The
analysis of these algorithms is similar to that above and will not be presented.

Often algorithms with more than one smoothing are considered (ref. 3), (ref. 17), (ref. 19). This is not advised
in the above algorithm since the smoothing iteration is generally unstable.

3. SMOOTHERS BASED ON THE SYMMETRIC PROBLEM.

In this section, we consider smoothers which are based on the symmetric problem. The symmetric smoother
will be denoted by Ri. We state a number of abstract conditions concerning these smoothing operators. We
then give three examples of smoothing procedures which satisfy these assumptions. In Section 5, we provide
convergence estimates for multigrid algorithms with Ry = Ry in Definition MG.

The first two conditions are standard a,gsumptions used in earlier multigrid analyses. For k > 1, let K =
I - Ry A, (defined on Mi) and T = Ry Ay Py (defined on M;). We assume that:
(1) There is a constant Cg such that

(C.1) -(-Eﬁ)-’i < Cr(Riu,u)s, for all u € My,

where Ry = (I —-I%{I%p,)fi[l and ); is the largest eigenvalue of A¢. Here and in the remainder of this paper,
* denotes the adjoint with respect to the inner product A(4).
(2) There is a constant # < 2 not depending on k satisfying

(C2) A(Tv,Tiv) <0A(Tiv,v)  for all v € M;.

Provided that (C.2) holds, (C.1) is equivalent to

(3.1) gu—”\g)—k < C(Riu,u)s, for all u € M;.

When R; is symmetric with‘ respect to (-, )i, (C.2) states thaE the norm of T} is less than or equal to §. Even in
the case of non-symmetric Ry, (C.2) implies stability of (I — Ti). In fact, for any w € My, (C.2) implies that

A((I - T)w, (I = To)w) = A(w, w) - 2A(Tiw, w) + A(Tiw, Tiw)

(32) < A(w, w) - (2 - O)A(Tiw, w) < Aw,w).

48



The final condition is that for k > 1, there exists a constant C satisfying
(C.3) (Tew, Tiu)e < CA'A(Tiu,u)  forall u € My,
A simple change of variable shows that (C.3) is the same as

(Riv, Rev)r € CAY(Rev,v)x forallv € My
In the case when R is symmetric, this is equivalent to
(3.3) (Rev,v)e < CA (v, v forallv e My

and is the opposite inequality of (3.1). Note that both (C.2) and (C.3) hold on M;.
Remark 8.1. If Conditions (C.1)-(C.3) hold for a smoother Ry then they hold for its adjoint R} with respect to
the inner product (-,-)¢. This means that (C.1) holds for Ry = (I — RiK})A;! and that (C.2) and (C.3) hold

with T} replacing Ti. In the case of (C.2) and (C.3), the corresponding inequalities hold with the same constants
as those appearing in the original inequalities.

Ezample 1. The first example of a smoother is the operator
Ry = XEII

where I denotes the identity operator on Mj and Ax £ Ax < Ce. In this case, (3.1) holds with C' = e/, (C.2)
holds with # = 1 and (3.3) holds with C = A¢/A:. To avoid the inversion of L? Gram matrices in the multigrid
algorithm, we use the inner product

(3.4) (u, )k = B} D u(zi)v(zi).

Here the sum is taken over all nodes z; of the subspace M. Note that (-, )i is uniformly (independent of k)
equivalent to (,-) on M;.

The remaining smoothers correspond to Jacobi and Gauss-Seidel, point and line iteration methods. We shall
present these smoothers in terms of subspace decompositions. Specifically, we write

i
(3.5) M=) _ M
i=1

where M| is the one dimensional subspace spanned by the nodal basis function @} or the subspace spanned by
the nodal basis functions along a line. The number of such spaces [ = I(k) will often depend on k. These spaces
satisfy the following inequality.

(3.6) loll < Chelloll;,  for all v € M;.

Ezample 2. For the second example, we consider the additive smoother defined by

1
(3.7 Re=v) AQus

i=1
Here Ap; : M — Mj is the defined by

(/ik,;v, Xk = A(v,x) for all x € M,i
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and Qi : Mi — M is the projection onto M} with respect to the inner product (-,-)¢. The constant v is a scaling
factor which is chosen to ensure that (C.2) is satisfied (see, e.g., (ref. 11),(ref. 5)). Note that Ry is symmetric

with respect to the inner product (-, -)r. In addition, (3.1) and (3.3) are shown to hold in (ref. 11) with point
Jacobi. When the subspaces M are defined in terms of lines, (3.1) was proved in (ref. 5). The estimate (3.3)
easily follows in the line case using the support properties of the basis functions and (3.6). For this example, we

take (-, ")k = (-, -) for all k.

Ezample $. We next consider the multiplicéfivé smoother. Given f € My, we define R by

(1) Set vo =0 € M;.
(2) Define v;, fori=1,...,1, by o ' )
vi = vi-1 + A} Qui(f — Arvic1).

(3) Set Rif =vi.
Conditions (C.1) and (C.2) are known for this operator (see, e.g., (ref. 5)). The next lemma shows that (C.3)
holds for this choice of Ry. For this case, we also take (-,-)x = (-, ) for all k.

Lemma 3.1. (C.3) holds when R, is defined to be the multiplicative smoother of Example 3.

Proof. The proof uses the techniques for analyzing smo&h&?ﬂrééeﬁtéd in (réf. 5). Fix k> 1and let
(38) =(I-B)(I-B"---(I-B)

where P denotes the A(:,-) projection onto M and & = I. Note that (I - Ti) = & and &i_; = &; + Bié;_;. Hence
’ s oA
Ti=1-& = EP;:&-_l
' i=1 '

and fox: every u € My, (cf., (ref. 5)) o N
| A(2I = To)u, Trw) = Ay, u) — A(Eu, Eu)
=Y A(Pii1u, & 1u).
i=1

Since h? < e);’, the proof of the lemma will be complete if we can show that

]
(3.9) (T, Tiu) < ch? Efi( Bif: 1u,&i-1u).

=1

Expanding the left hand side of (3.9) gives

! i
(3.10) (T‘ku,ﬁu) = ZZ(P{&-W,P{?;—W)-

=1 j=1

Because of the support properties of {¢}}, the subspaces {M;} satisfy a limited interaction property in that for
every i, the number of subspaces j for which (v/,v') # 0, with v\ € Mj and v/ € M] is bounded by a fixed
constant ng not depending on k or I. Lemma 3.1 of (ref. 5) implies that the double sum of (3.10) can be bounded
by np times its diagonal, i.e.

!
(3.11) (Tiu, Tiu) < no E(ﬁ,ﬁfi_lu,ﬁ,fég_lu).

i=1
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Applying (3.6) gives
(3.12) (f",:f:',-_lu, f’,:é,-_lu) < Chifi(ﬁ,:éi_1u, é;_lu).

Combining (3.11) and (3.12) proves (3.9). This completes the proof of the lemma.

Remark 3.2. The same analysis could be used for successive overrelaxation type iteration. In that case,
& =(I-pP)(I-pE)---(I-BR)

where 8 € (0,2) is the relaxation parameter.
4. SMOOTHERS BASED ON 4.

In this section, we consider smoothing operators Ry which are defined directly in terms of the nonsymmetric
and/or indefinite operator A;. The first smoother is one that was originally analyzed in (ref. 1) and subsequently
studied in (ref. 10).

Ezample {. For our first example of a smoother based on Ay, we consider R, defined by
Ry = 32AL

Here, A} is the adjoint of Ax with respect to the inner product (-s )¢ and Xy is as in Example 1. A possible
motivation for such a choice is that, on M;, the iteration

v =o' T R A2AL(F - AT

is stable in the norm (-, )i/ ? provided that A% is greater than or equal to half the largest eigenvalue of A{A,.

Ezample 5. This example is closely related to the second example of the previous section. As in that example, we
define the line or point subspaces {M} for i =1,...,l. Note that the form A(, -) satisfies a Garding inequality

ctA(u,u) —clulf’ < A(u,u)  for all u € HY(Q).

Consequently, by (3.6), . '
(c1 — Ch})A(u,u) < A(u,u)  for all u € M{.

We will assume that h; is sufficiently small so that
(4.1) Chi < ¢1/2.
This means that A(.,-) restricted to M{ has a positive definite symmetric part. Hence, the projector P} : M;
Mj satisfying ' '
A(Pyv,w) = A(v,w)  for all w € M]
is well defined and satisfies

(4.2) IPéull, < Cllully o -

The second norm is taken only over the subdomain Q;; which is the set of points of Q where the functions in M}
are nonzero. In addition, the operator Ay; : M — M| defined by

(Akiv, wh = A(v, w) for all v, w € M},
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is given by E = E; where -
(5.1) .

Weth;n 7171a've’ the 'froﬁdijg théégém.

is invertible. We set Ri by
I
Ri=7)_ AiiQki
=1

We choose 7 as in Example 2 so that the symmetric smoother defined by (3.7) satisfies (C.2).

Ezample 6. Our final example is that of Gauss-Seidel directly applied to the nonsymmetric/indefinite equations.
We assume that the subspaces {M/} satisfy the conditions of the previous example. The block Gauss-Seidel
algorithm (based on Aj) is given as follows:
(1) Setvp=0€ Me.
(2) Define v;, fori=1,...,1, by :
vi = vio1 + A Qui(f — Arvica)-

(3) Set Ref = ur.

5. ANALYSIS OF THE MULTIGRID ITERATION (2.12).

We provide an analysis of the multigrid iteration (2.12) in this section. This analysis is based on the product
representation of the error operator (2.13). All of the analysis of this section is based on perturbation from the
uniform convergence estimates for multigrid applied to symmetric problems.

We start by stating a result from (ref. 6) estimating the rate of convergence for the multigrid algorithm applied
to the symmetric problem. Specifically, we replace A, by A, and Ry by Ry in Definition MG. Set T, = B.
From the earlier discussion, the error operator associated with this iteration applied to finding a solution for the
symmetric problem R
Aru=Quf

Ek=(I—ﬂ)(I—T2)"'(I—Tk). ,

Theorem 5.1 (ref. 6). Fork > 1, Jet fl;, satisfy ( C.l) and (C2) Under the assumptions on the domain Q and
the coefficients of (2.1) given in Section 2, there exists a positive constant 6 < 1 not depending on J such that

A(Eju, Eju) < 8%A(u,u)  for allu € M;.

To analyze the multigrid algorithms using the smoothers of Section 3, we use the perturbation operator
Zy =T = T
We note that for any u,v € My, for k > 1,
(5.2) A(Zvu,v) = D(u, T}v).

Indeed, by definition, i o o
A(Tiu,v) = (Teu, Ag Pro)r = (ArPru, RLALPiv)e
= (ArPew, Tio)e = A(Piu, Tiv)
= A(u, Tpv) = A(u, Tfv) + D(u, Tv).
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The equality (5.2) immediately follows.
To handlie the case of k = 1, we have
(5.3) A(Z1u,v) = D((I - P))u, Byv).

In fact, by definition, ) ) )
A(Plu, U) = A(Pﬂi, Pjv)
= A(u: P]'U) - D(P]U, }511))
= A(Pu,v) + D((I - Pi)u, Bv).

The following theorem provides an estimate for the multigrid algorithm when the smoothers of Section 3 are used.

Theorem 5.2. Let Ry = Ry and assume that (C.1)-(C.3) hold. Given ¢ > 0, there exists an ho > 0 such that for
hy S hO; . .
A(Eu,Eu) < 6%A(u,u) forallue My,

for § = § + c(hy + €). Here § is less than one (independently of J) and is given by Theorem 5.1.

Proof. For an arbitrary operator O : My — My, let ||O]]; denote its operator norm, i.e.,

A(Ou,v)
Olly= sup = - —,
o1l u,vE:I‘)f; A(u, u)/2A(v, v)\/2

Applying (2.4), (2.9) and (2.8) to (5.3) gives
|A(Z1u,v)| < Cel|(I = Pr)ully [loll; < Cellull, [loll; -
This means that the operator norm of Z; is bounded by Ce. Since the operator norm of (I — P,) is less than or
equal to one, the triangle inequality implies that the operator norm of (I — P;) = (I — P, — Z;) is bounded by
1+ Ce.
For k > 1, applying (2.4), (C.3), Remark 3.1, and (3.2) to (5.2) gives

|A(Zeu, v)]| < che [Jull, A(Trv, v)'/2
< chi [lull; flell; ,

i.e., the operator norm of Z; is bounded by chi. Since, by (3.2), the operator norm of (I —Tk) is less than or equal
to one, the triangle inequality implies that the operator norm of (I — Ti) = (I — Tk — Zi) is less than or equal to
1 + chy. Hence, it follows that

k
IEdla< 1+ Co[(1+ch) <C.
i=2

It is immediate from the definitions that
(5.4) E, - Ek = (Eg-1 ~ Ek_l)(l - Tk) — Ev 172,
By (3.2) and the above estimates, for k > 1,

B — Exlly < 1By — Exall N = Till g + 1Bl 411 2215

(5.5) A
< ||Ek-1 — Ex-1l|4 + Che.
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Repetitively applying (5.5) and using
1By = Exlly = [|Z1]|4 < Ce

gives that

J
”EJ - EJ”A < CE+Cth < c(hy +¢).
k=2

The theorem follows from the triangle inequality and ,Theprem 5.1.

Remark 5.1. Note that ¢ can be made arbxtrarlly small by takmg h1 small enough. Consequently, Theorem 5.2
shows that the multigrid iteration converges with a rate which is independent of J provided that the coarse grid is
ﬁne enough The coarse gnd mesh size can a.lso be taken to be independent of J.

We next consxder the case of Example 4. For this example, we consider first the multlgrld algorithm for the

symmetric problem which uses

(5.6) Rk = /-\,:Ziik

as a smoother. From the dlscussmn in Sectxon 2 the 1terat10n (2 12) with Rk (g1ven by (5 6)) and Ay replacing,
respectwely, R; and Ak in Definition MG, gives rise to the error operator given by (5.1) where, as above, for

k > 1,T, = RiAiB.. The smoother (5.6) does not satisfy (C.1) and so the first step in the analysis of the
nonsymmetric and/or indefinite example is to provide a uniform estimate for E; given by (5.1). Such an estimate
is provided in the following theorem. Its proof is given in the appendix.

Theorem 5.3. Let E; be given by (5.1) where T = R, AP, and Ry is defined by (5.6). Then,
A(E’Ju, E’fu) < 52A(u, u) for all u € M.

Here § is less that one and independent of J.
We can now prove the convergence estimate for multigrid applied to (2.1) using the smoother of Example 4.

Theorem 5.4. Let R be defined by Example 4. Given € > 0, there exists an hy > 0 such that for hy < hy,
A(Eu, Eu) < 82A(u, u) for all u € My,

for § = 6 + ¢(hy + €). Here § is less than one (independently of J) and is given by Theorem 5.3.

Proof. For k > 1, we consider the perturbation operator

Zr=T; — 'f'k = :\Ez(AiAkPk - Aif’k)

Clearly,
(5.7) Zi = AN AL (AP, — AcBy) + (AL — AP AR
As in (5.2),

X;lfi((AkPk - Akpk)u, v) = /_\,:ID(u, flkﬁ‘kv)

from which it follows using (2.4) that )
[IAs(AxPx — AcPi)ll; < chy.

A similar argument shows that ) o
I3 (AL = A Bill; < chy.
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It is not difficult to show that _
lAkl15 < Che.

Combining the above estimates with (5.7) gives
1Zell5 < IR ALl (AxPe = AePo)ll
+ I (AL = Ae) Pl alINe" AePill 5 < chy.
The remainder of the proof is exactly the same as that of Theorem 5.2. This completes the proof of the theorem.

We next consider the case of Example 5. We use perturbation from the multigrid algorithm for A which uses
the smoother Ry defined by Example 2. Theorem 5.1 provides a uniform estimate for the operator norm of Ej.

Theorem 5.5. Let Ry be defined by Example 5. Given € > 0, there exists an hg > 0 such that for h; < hg,
A(Eu, Eu) < 82A(u, ) for all u € My,

for § = & + c(hy + €). Here § is less than one (independently of J) and is given by Theorem 5.1 applied to R
defined in Example 2.

Proof. For this case, the perturbation operator Zj is given by

!
Ze=7) _(P{-B)).

i=1
As in (5.3), o
A((P{ - Piyu,v) = D((I - Fi)u, Plv).
Applying (2.4), (3.6) and (4.2) gives
(5.8) A((Pf = Byu,v) < che [lully o llvlly o

and hence

!
A(Zxu,v) < chi z llulh,n; "U”m; :

f=1

Using the limited overlap properties of the domains, i gives
12k[l3 < ch.

The remainder of the proof of the theorem is exactly the same as that given in the proof of Theorem 5.2.

We finally consider the case of Example 6. We use perturbation from the multigrid algorithm for A which uses
the smoother R, defined by Example 3. Theorem 5.1 provides a uniform estimate for the operator norm of Ej.

Theorem 5.6. Let Ry be defined by Example 6. Given ¢ > 0, there exists an hy > 0 such that for hy < hg,
A(Eu, Eu) < 8*A(u, u) for all u € My,

for 6§ = 6 + c(hy + €). Here é is less than one (independently of J) and is given by Theorem 5.1 applied with Ry
defined as in Example 3.

Proof. The perturbation operator for this example is

Z,=T.-T. =& - &
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where & is given by (3.8) and ' .
&=(I-P)I-F)(I-F)

with & = I. As in (5.4), . o B .
Ei=&i=I—-P)(&io1 - Eim1) = (P — B)Eiar-

Since the last two terms are orthpgﬁopg}ﬁ@}l respect to A(-,") we hgye that
NN = €)ulll = NI = P{)(Eir = E-r)ulll + 1B = PDE1uly.
Becaus; of (58) and the fagiiﬁimﬁtliheﬁrf)i}irératior xrrxorr,nrf)f (I- 13,:) is ngundg:d_BrX one, it follows that
& = Eulle < 11(Bis — Eulll + CHENEullay -

Summing over i, since & = & = I, we obtain

. .

(5.9) (€ - E)ully < CHEDYlEaulllg -
=1
‘We shall show that
: y 2
(5.10) Y llEi-1ullf gy < Cllulll.
i=1

By the arithmetic-geometric mean inequality, the definition £ and the limited interaction property (see (3.10) and
above) it follows that

{ [4 ¢
2 2 2
SollE it <23 llullfay +2) llu— E-aulling
i=1 i=1 i=1

2

i-1
> PlEnu
m=1

¢
<Cllull}+23
i=1

105

[
< Cll+ Y S 1P En-1ull ;)

m=1 i=1

(5.11)

¢
< C(llully + D NP Em-1ull3)-
m=1

In order to estimate the last term on the right of (5.11) we write

|| P

m-1U, Ik m_luj t
= A((Em-1 = Em)t, (Em-1— Em)u)
(5.12) = A((Emo1 = En)ty (Emos + Em)W) = 2A(P o, En)
= A(Em_lu, Em_14) — A(Entt, Emu)
— 2A(PPEm-1u, (I — PM)Em-1)u).

En-suly = ACPPEn

Now by (58)

619 APP Emorsy (I = PP)emo1t) = AP Emrtt, (B = P{")Em-1)11)
' < Che|| P Em-1ull4 Hgm—lulll,ﬂ;" .
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Hence, combining (5.12) and (5.13), we have
PP Em1ully < CLA(Em-14, Em-16) — A(Ents Env)] + ChE [|Em-1ullf ap -

Summing over m we conclude that

¢ ¢
E PP Em-1ull} < Cllully + CchY . ||5m-1“||?,n;p .
m=1

m=1

This together with (5.11) yields (5.10) when h; is small enough. Finally, we obtain from (5.10) and (5.9) that for
kE>1,
1Zell4 < Che.

The remainder of the proof of this theorem is the same as that of Theorem 5.2.

Remark 5.2. The same analysis could be used for successive overrelaxation type iteration. In that case,

& =(I-BP)(I-BPY)---(I-BP)

where 3 € (0,2) is the relaxation parameter.

Remark 5.9. Many extensions and generalizations of the techniques given above are possible. These techniques
lead to uniform estimates for multigrid iteration methods for solving nonsymmetric and/or indefinite problems for
the following applications.

(1) Approximations using higher order nodal finite element spaces.
(2) Three dimensional problems.

(3) Problems with discontinuous coefficients as discussed in (ref. 6).
(4) More general boundary conditions.

(5) Problems with local mesh refinement as described in (ref. 11).

(6) Finite element approximation of problems on domains with nonpolygonal boundaries as discussed in
(ref. 6).

In addition, the perturbation analysis given above can be combined with results for additive multilevel
algorithms, for example, Theorem 3.1 of (ref. 6). This leads to new estimates for additive multilevel
preconditioning iterations applied to indefinite and nonsymmetric problems. Provided that the coarse grid is
sufficiently fine, the operator

' J
P=)T
k=1

has a uniformly (independent of J) positive definite symmetric part with respect to the inner product A(-,-) and
has a uniformly bounded operator norm. These results extend to all of the applications discussed in Remark 5.3.

6. APPENDIX

We provide a proof of Theorem 5.3 in this appendix. We will apply the analysis given in the proof of Theorem
3.2 of (ref. 6). Note that we cannot directly apply Theorem 3.2 of (ref. 6) since the smoother Re = :\;2,4;, does
not satisfy (C.1). We note, however, that Theorem 5.3 will follow from the proof of Theorem 3.2 of (ref. 6) if we
show that (C.2) holds as well as (3.5) and (3.6) of (vef. 6) with T} replaced by Ti defined above. Clearly, (C.2)
holds with § = 1. The remaining two inequalities corresponding to (3.5) and (3.6) of (ref. 6) are

(6.1) A(Tiv,v) < (Cn* )2 A(v,v) forallve My, I<k
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and

J
(6.2) A(v,v) < C’ZA(Tkv,v) for all v € M.
k=1

Here 7 is less than one and independent of k and I.

From the definition of X, we 6bﬁ6ﬁs]y have
AT, v) 5 A tA(A,v) = ATy, v).
As in (ref. ?), we have set T} = X;lﬁk. Inequality (6.1) follows from Lemma 4.2 of (ref. ?).
Inequality (6.2) can be rewritten, 7

J V 2
(6.3) Aw,u) <C (A(ﬁlu, )+ 3 A2 “’i”f)""”l) .
k=2

To prove this we proceed as follows. Let u € M; and Q07= 0. Then

A(u,u) = i Alu, (Qx - Q-1)u)
k=1
(6.4) < (/i( Plu, u) + kz:; P N.Aikf’ku”j) 1/2 (A(Qm, Qiu)

J ) 1/2
+ 3 R(ATH(Qx - Qucr)us (Qs - Qk_l)u)k)

) k=2
Now, for k > 1, )
(AN (Qk = Qr-1)u, (Qk — Qr_1)uk
A2 (Qk — Qu)u, )2

= sup

$eM, (0
- su (Qk — Qr—1)u, (Q — Qi—1)¥)?
= : )
VEM; Iy

By well known approximation properties,

(@ = Qu-1)¥, (@ — Qe—1)¥)y* < C1I(Qk — Qe )|l < Cha Il -

Combining the above estimates gives

AQuu, Quu) + 3 (A7 (Qk — Qk-1)u, (Qk — Qe_r)u

k=2
6.5 . I .
©3) < C(A(Qlu, Quu) + 3 X [l(Qx — Qk_l)uu"’)
k=2
< CA(u,u).

The last inequality of (6.5) is (4.5) of (ref. ?) and also can be found in (ref. 7). Combining (6.4) and (6.5) proves

(6.3) and hence completes the proof of the theorem.
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